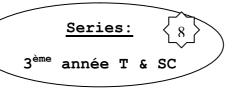
LYCEE SECONDAIRE 9 AVRIL 1938 Sidi Bouzid



EXERCICEN°1

Etudier la dérivabilité de f au point x_0 et écrire les équations des tangentes au point $M_0(x_0, f(x_0))$ à sa courbe représentative

a)
$$f(x) = \sqrt{x} + 1, x_0 = 1$$

b)
$$f(x) = x^2 - |x+1|, x_0 = -1$$

c)
$$f(x) = \frac{x-1}{x+1}, x_0=0$$

EXERCICE N°2

Soit f la fonction définies par: $\begin{cases} f(x) = \frac{|x||x-3|}{(x-3)(x^2+1)} & \text{si } x \neq 3 \\ f(3) = \frac{-3}{10} \end{cases}$

- 1- Etudier la continuité de f en 0, préciser les demies tangentes à sa courbe représentatives au point d'abscisse 0
- 2- a) la fonction f est elle continue en 3 est elle dérivable en 3?
 b) Montrer que f est dérivable à gauche en 3 et préciser la demi tangente

EXERCICE N°3

Soit f la fonction définie sur IR par: $\begin{cases} f(x) = \sqrt{x^2 - 1} + 4 + mx \text{ si } x \ge 1 \\ f(x) = x^2 - 2mx \text{ si } x < 1 \end{cases}$

- 1- Déterminer m pour que f soit continue en 1
- 2- Etudier suivant m $\lim_{x \to +\infty} f(x)$
- 3- On désigne par Cf la courbe représentative de f dans un repère orthonormé (o, \vec{i}, \vec{j}) ** On suppose que m=-1
- a) Etudier la dérivabilité de f en 1
 - b) En déduire que Cf possède deux demies tangentes que les précisera, construire ces deux demies tangentes
 - c) Soit M_0 un point de Cf d'abscisse x_0 et T la tangente à Cf . Ecrire une équation de T
 - d) Déterminer x_0 pour que T passe par A(1,0) noté T_0

EXERCICE N°4

Soit
$$f(x) = x - \sqrt{3 - x^2}$$

- 1- déterminer le domaine de définition de f
- 2- Etudier la dérivabilité de f à droite en $-\sqrt{3}$ et à gauche en $\sqrt{3}$ interpréter graphiquement ces résultats

EXERCICE N°5

Soit Cf la courbe représentative de la fonction f définie par: $f(x) = \frac{3}{1+x}$

- 1- Déterminer les points de Cf où la tangente soit parallèle à la droite D:y=-4x
- 2- Soit D':y=ax+b une droite du plan existe t-il des tangentes à Cf qui sont parallèles à D'
- 3- Existe t-il des tangentes à Cf issue de A (0,1)